
Unit	Testing

Hans-Petter	Halvorsen,	M.Sc.



Contents

1.What	is	Testing?
– Short	Introduction	to	Testing

2.What	is	Unit	Testing?
3. Unit	Testing	in	Visual	Studio



Introduction	to	Testing

Hans-Petter	Halvorsen,	M.Sc.



Requirements	
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation	
Guides

User	Guides

Gantt		Chart

with	ER	Diagram,	UML	Diagrams,	CAD	Drawings

Test	
Documentation

Software	Requirements	
Specifications	

Software	Design	Documents
System	Documentation

Software	Test	Plan	(STP)

Project	Planning

End-User
Documentation

System
Documentation

Software	Test	Documentation

SDP
Software	Development	

Plan	

Gantt		Chart

The	Software	
Development	

Lifecycle
(SDLC)



Why	Find	Bugs	early?

Software	Development	Life	Cycle	(SDLC)



Validation	Testing Defect	Testing

Testing

Demonstrate	to	the	Developer	and	the	
Customer	that	the	Software	meets	its	
Requirements.

I.	Sommerville,	Software	Engineering,	10	ed.:	Pearson,	2015.

Custom	Software:
There	should	 be	at	least	one	test	for	every	
requirement	 in	the	SRS	document.
Generic	Software:
There	should	 be	tests	for	all	of	the	system	
features	that	will	be	included	 in	the	product	
release.

Find	 inputs	or	input	 sequences	where	
the	behavior	of	the	software	is	incorrect,	
undesirable,	or	does	not	conform	to	its	
specifications.	
These	are	caused	by	defects	(bugs)	 in	
the	software.



Test	Categories
Black-box	vs.	White-box	Testing

White-box	Testing:	You	need	to	have	
knowledge	of	how	(Design	and	
Implementation)	the	system	is	built

Black-box	Testing:	You	need	no	
knowledge	of	how	the	system	is	created.

Typically	done	by	Developers,	etc



Levels	of	Testing

Unit	Testing

Integration	Testing

System	Testing

Acceptance	Testing

Any	module,	program,	object	separately	
testable	

Interface	between	components;	 interactions	
with	other	systems	(OS,	HW,	etc)	

The	behavior	of	the	whole	product	(system)	as	
defined	by	the	scope	of	the	project	

Is	the	responsibility	 of	the	customer	– in	general.	The	goal	
is	to	gain	confidence	 in	the	system;	especially	in	its	non-
functional	 characteristics	



Levels	of	Testing
Unit	Testing:	Test	each	parts	
independently	and	isolated

Integration	Testing:	Make	sure	
that	different	pieces	work	
together.	Test	the	Interfaces	
between	the	different	pieces.
Interaction	with	other	systems	
(Hardware,	OS,	etc.)

System	Testing:	Test	the	whole	system

Regression	Testing:	Test	
that	it	still	works	after	a	
change	in	the	code,	i.e.,	
run	all	Unit	Tests,	etc.



Levels	of	Testing

Unit	Testing

Regression	Testing

Integration	Testing

System/Validation	
Testing

Acceptance	Testing

Start

Finish

Requirements	&	Design
Start	Development

Unit	Tests	are	written	by	the	Developers	as	part	of	the	
Programming.	Each	part	is	developed	and	Unit	tested	
separately	(Every	Class	and	Method	 in	the	code)

The	Customer	needs	 to	test	and	approve	 the	software	
before	he	can	take	it	into	use.	FAT/SAT.

System	testing	is	typically	Black-box	Tests	that	validate	
the	entire	system	against	its	requirements,	 i.e	Checking	
that	a	software	system	meets	the	specifications	

Integration	testing	means	the	system	is	put	together	
and	tested	to	make	sure	everything	works	together.

Regression	testing	is	testing	the	system	to	check	that	
changes	have	not	“broken”	previously	working	code.	
Both	Manually	&	Automatically	(Re-run	Unit	Tests)



Unit	Testing

Hans-Petter	Halvorsen,	M.Sc.



What	are	Unit	Tests
• Unit	Testing	(or	component	testing)	refers	to	tests	
that	verify	the	functionality	of	a	specific	section	of	
code,	usually	at	the	function	level.	

• In	an	object-oriented	environment,	this	is	usually	at	
the	class	and	methods	level.

• Unit	Tests	are	typically	written	by	the	developers	as	
part	of	the	programming

• Automatically	executed	(e.g.,	Visual	Studio	and	
Team	Foundation	Server	have	built-in	functionality	for	Unit	Testing)



Test	Driven	Development	(TDD)
• Coding	and	Testing	are	done	in	parallel
• The	Tests	are	normally	written	before	the	Code
• Introduced	as	part	of	eXreme	Programming	
(XP)	(an	Agile	method)

• Unit	Tests	are	important	part	of	Software	
Development	today	– either	you	are	using	TDD	
or	not



Unit	Tests	Frameworks
Unit	Tests	Framework	are	usually	integrated	with	the	IDE
• Visual	Studio	Unit	Test	Framework.	Unit	Tests	are	built	 into	Visual	Studio	 (no	additional	

installation	needed)
Others:
• JUnit (Java)	

– JUnit	is	a	unit	testing	framework	for	the	Java	programming	language.
• NUnit (.NET)

– NUnit	 is	an	open	source	unit	testing	framework	for	Microsoft	.NET.	It	serves	the	same	purpose	
as	JUnit	does	 in	the	Java	world

• PHPUnit (PHP)
• LabVIEW	Unit	Test	Framework	Toolkit
• etc.

All	of	them	work	in	the	same	manner	– but	we	will	use	the	Visual	Studio	Unit	Test	Framework	

http://en.wikipedia.org/wiki/Visual_Studio_Unit_Testing_Framework



Basic	Concept	in	Unit	Testing

...

Assert.AreEqual(expected, actual, 0.001, ”Test failed because...");

The	basic	concept	in	Unit	Testing	is	to	Compare the	
results	when	running	the	Methods	with	some	Input	
Data	(“Actual”)	with	some	Known	Results	(“Expected”)

Example:

Compare
Error	margin Error	message	shown	 if	

the	Test	fails

All	Unit	Tests	
Framework	have	the	
Assert	Class

The	Assert	Class	contains	different	Methods	 that	can	
be	used	in	Unit	Testing



Unit	Tests	– Best	Practice
• A	Unit	Test	must	only	do	one	thing
• Unit	Test	must	run	independently
• Unit	Tests	must	not	be	depend	on	the	environment
• Test	Functionality	rather	than	implementation
• Test	public	behavior;	private	behavior	relates	to	implementation	

details
• Avoid	testing	UI	components
• Unit	Tests	must	be	easy	to	read	and	understand
• Create	rules	that	make	sure	you	need	to	run	Unit	Tests	(and	they	

need	to	pass)	before	you	are	allowed	to	Check-in	your	Code	in	
the	Source	Code	Control	System

http://www.uio.no/studier/emner/matnat/ifi/INF5530



Unit	Testing	in	Visual	Studio

Hans-Petter	Halvorsen,	M.Sc.



Unit	Testing	in	Visual	Studio
• Visual	Studio	have	built-in	features	for	Unit	
Testing

• We	need	to	include	a	“Test	Project”	in	our	
Solution



Test	Method	Requirements

A	test	method	must	meet	the	following	
requirements:
• The	method	must	be	decorated	with	the	
[TestMethod]	attribute.

• The	method	must	return	void.
• The	method	cannot	have	parameters.



Example

Hans-Petter	Halvorsen,	M.Sc.

Unit	Testing	in	Visual	Studio



Convert	to	Fahrenheit

𝑇" =
9
5𝑇& + 32

A	simple	sketch	of	the	User	Interface:

Conversion	Formula:

Create	the	following	Application	 (e.g.,	WinForm App	or	ASP.NET	App)

Celsius:
22 ℃ Convert 71,6 ℉

Fahrenheit:



User	Interface



Create	your	GUI





Add Class



Class

𝑇" =
9
5𝑇& + 32



public class TemperatureConvert
{

public double CelciusToFahrenheit(double Tc)
{

double Tf;

Tf = 9/5 * Tc + 32;

return Tf;
}

}





Create	your	Code



using System;
using System.Windows.Forms;

namespace TemperatureApp
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void btnConvert_Click(object sender, EventArgs e)
{

TemperatureConvert temperature = new TemperatureConvert();

double temperatureFahrenheit;
double temperatureCelcius;

temperatureCelcius = Convert.ToDouble(txtCelsius.Text);

temperatureFahrenheit = temperature.CelciusToFahrenheit(temperatureCelcius);

txtFahrenheit.Text = temperatureFahrenheit.ToString();

}
}

}





Test	Application

𝑇" =
9
5𝑇& + 32

𝑇" =
9
5 , 22 + 32

=71.6We	get	wrong	Answer!





Create	Unit	Test	Project



You	have	now	2	Projects	in	your	Solution	Explorer



Add	Reference	to	the	Code	under	Test





Create	the	Unit	Test	Code



Create	the	Unit	Test	Code



using Microsoft.VisualStudio.TestTools.UnitTesting;
using TemperatureApp;

namespace UnitTestTemperature
{
[TestClass]
public class UnitTestTempConvert
{
[TestMethod]
public void TestFahrenheitConversion()
{
TemperatureConvert temperature =	new TemperatureConvert();
double	temperatureCelcius =	22;
double	temperatureFahrenheitActual;
double	temperatureFahrenheitExpected =	71.6;

temperatureFahrenheitActual =	temperature.CelciusToFahrenheit(temperatureCelcius);

Assert.AreEqual(temperatureFahrenheitExpected,	temperatureFahrenheitActual,	0.001,	"Temperature conversion
not	correctly");

}
}

}





Test	Explorer



Start	Running	the	Unit	Test



Test	Results





Debugging
public class TemperatureConvert
{

public double CelciusToFahrenheit(double Tc)
{

double Tf;

Tf = 9/5 * Tc + 32;

return Tf;

}

}

𝑇" =
9
5𝑇& + 32

Probably	Error	in	Formula?
What	is	wrong?



Fixing	Bugs
public class TemperatureConvert

{

public double CelciusToFahrenheit(double Tc)
{

double Tf;

Tf = Tc*9/5 + 32;

return Tf;

}

}

𝑇" =
9
5𝑇& + 32



Re-run	Unit	Test

Everything	Works!	The	Test	Passed!





Checking	Code	Coverage



Code	Coverage
• Code	coverage	is	a	measure	used	in	software	testing.	It	describes	

the	degree	to	which	the	source	code	of	a	program	has	been	
tested.

• Depending	on	the	input	arguments,	different	parts	of	the	code	will	
be	executed.	Unit	Tests	should	be	written	to	cover	all	parts	of	the	
code.



Code	Coverage	Results

In	this	case	the	Unit	Test	covered	100%	of	the	code.	If	we	use	If…Else…	or	similiar,	we	typically
need	to	write	Unit	Test	for	each	If…Else…	in	order	to	cover	all	the	Code





Hans-Petter	Halvorsen,	M.Sc.

University	College	of	Southeast	Norway
www.usn.no

E-mail:	hans.p.halvorsen@hit.no
Blog:	http://home.hit.no/~hansha/


